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ABSTRACT  
This paper, by experimentally investigating the influence of different corrosion product layers on the corrosion 

resistance of 13% chromium steel in HCl solution, describes the level of the corrosion rates induced by deposited 

iron sulfide and elemental sulfur layers on the steel surface. In order to facilitate the experiment numbers, three 

analytic prediction methods, which are the optimal solution, curve fitting and artificial neural network, were applied 

to predict the corrosion rates of 13% chromium steel. Results showed that the fitness between measured and 

predicted corrosion rates by curve fitting indicates a good correlation between experiments and developed model, 

however, the minimum deviation from the measured data was obtained with artificial neural network model which is 

insignificant compared to the deviation of the two other models  
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I. INTRODUCTION 
 

Corrosion, either sweet corrosion generated by CO2 or sour corrosion generated by H2S [1], is realized as a main 

issue that the oil and gas industry are faced with. During the production stage, pipelines and other equipment will be 

corroded due to the reactions between CO2, H2S and Fe [2]. Pipelines designed to withstand 50 years of operation, 
however, under a “worst case” general corrosion rate may fail after a few months of operation due to localized 

corrosion. Loss of containment from a pipeline failure is a costly event as it would cause an emergency shutdown in 

the production of oil and gas, an emergency repair of the pipeline, and probably an environmental clean-up at the 

leak site [3]. In an effort to minimize pipeline failures and loss of containment, companies around the world in the 

oil and gas industry sponsor research programs focused on better prediction methods and better mitigation methods 

of localized corrosion. Normally, prediction of these two kind of corrosion, in order to estimate the equipment 

lifetime, are not a simple step because the general understanding of the corrosion mechanism, especially in a certain 

environmental conditions, is  usually below the required level to predict the accurate corrosion rate[4]. Depending 

on the environmental conditions, such as temperature and pH, the rate of these reactions will vary which determine 

the rate of corrosion process. In the literature, a number of research studies the prediction of the corrosion rate in 

sweet oilfields that can be classified in three general groups: mechanistic, semi-empirical and empirical models [2], 
[4], [5]. Among these models, by utilizing a large number of experimental CO2 corrosion data, it was shown that the 

empirical model, especially one based on the Artificial Neural Network (ANN), has the highest accuracy of 

corrosion rate estimation, while the lowest accuracy belongs to the mechanistic model [4].   

 

In the case of sour corrosion, it is well known that the corrosion products such as iron sulfide, formed on the steel 

surface immediately after a small concentration of H2S is introduced into the system which determine the corrosion 

pattern with regard to the environmental conditions [6], [7]. Generally it was found that formation of corrosion 

products on the steel surface significantly affect the estimation of upcoming corrosion process and consequently the 

prediction of finial corrosion rate [8].To estimate the corrosion induced by sour corrosion products, despite many 
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studies and proposed mechanistic models that have appeared in the literature, there is still lack of a reliable and 

accurate predictive model which can predict the corrosion rate in the presence of H2S corrosion products on the 

steel surface [9]–[11], [6]. The most recent research in this area showed that the developed corrosion models by 
ANN have indicated the highest accuracy among all other predicted models [1], [12], [13].  

 

The corrosion of 13 % chromium steel, one of the most common martensitic steel in oil and gas applications, in 

either sweet or sour condition, have been investigated from various aspects [14]–[16]. According to those 

investigations, one of the most effective factors in the corrosion process in oil and gas pipelines and especially in the 

sour ones, is the presence of deposited elemental sulfur produced by the H2S corrosion process [17]. It is known 

from prior research that the presence of dry elemental sulfur in contact with carbon steel is not considered as a 

corrosion threat to steel; however, by adding water to the system, the corrosion process may be dramatically 

accelerated [18]. A literature review has shown that the nature of H2S corrosion product layers controls the kinetics 

of this corrosion process from both phase type and morphology perspectives [6].  

 
As aforementioned issues above, in this study we are motivated to propose several analytic approaches to predict the 

corrosion rate of 13% chromium steel in a simulated sour environment by considering the presence of various sour 

corrosion product layers on the surface of steel, which can be named as optimal solution, curve fitting and ANN. In 

this way, the optimal solution assumes the measured corrosion rate as an output of an initial function, therefore, 

solver strives to find appropriate coefficients for the initial function to minimize its error, and then this initial 

function accuracy is improved and can be used for estimation purposes [19]. In the next proposed model, which is 

based on curve fitting, the measured corrosion rates in 2-D space plotted and curve fitting utilized to capture a 

polynomial. Thus, the obtained polynomial in proportion to input can estimate the corrosion rates. The finial applied 

approach in this study is ANN. An ANN is an information processing pattern that is inspired by the brain’s 

processing information system. [20]. The utilized pattern in ANN is composed of various layers which can be 

classified in the following layers: input, hidden and output layers. Hidden layers are always formed from a number 

of hidden neurons whose output is connected to the inputs of other neuron and is therefore not visible as a network 
output. Typically ANN comprise some form of learning rules that mutate the weights of the connections between the 

layers. In the following section, the capability of each model in estimation of the corrosion rates based on 

environmental conditions will be discussed. 

 

II. METHOD & MATERIAL 

 
A. Material and sample preparation 

According to industrial partner’s request, the corrosion samples were made from conventional 13% Cr steel. Table 1 

indicates composition of grade 420 chromium stainless steel. The working electrode was machined from the parent 

material into cylinders having dimensions of approximately 9 mm length and 9 mm diameter. It should be noted, 

prior to perform the experiments all specimens were polished with Coated Abrasive Manufacturers Institute (CAMI) 

grit designations 320, 600, 1000 corresponding to average particle diameters 36.0, 16.0, and 10.3 microns and 

finally 6 micron grit silicon carbide paper, and then cleansed with deionized water until a homogenous surface was 

observed. Thereafter, to avoid oxidation, the specimens were quickly dried by using cold air. 

 
Table 1. The chemical composition of conventional 13% Cr stainless steel grade 420. 

C Cr Mn Si P S V Fe 

0.027 12 0.22 0.3 0.014 0.0035 0.041 Bal. 

 

B. Corrosion measurements 
To investigate the effect of different corrosion product layers on electrochemical behavior of conventional 13% Cr 

steel, three series of experiments with consideration of different environmental conditions were conducted. In the 

first series of experiments the corrosion behavior of each sample was analyzed while its top surface was exposed 

into the electrolyte solution, 0.01 M hydrochloric acid, without any initial cover on it (i.e. no initial corrosion 
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product layer), with different environmental conditions. Table 2 listed the experimental conditions in first series of 

the experiments. 
Table 2. The experimental conditions in first series of the experiments 

Sample No 1 2 3 4 5 6 7 8 9 10 11 12 

T (◦C) 25 25 25 75 75 75 25 25 25 75 75 75 

NaCl (g/L) 0 10 20 0 10 20 0 10 20 0 10 20 

pH 2 2 2 2 2 2 4 4 4 4 4 4 

 

In the second series of the experiments, behavior of corrosion was analyzed while the working electrode were 

initially covered by a thin iron sulfide corrosion layer (i.e. FeS layer) synthesized by an acidic chemical bath [21]. 

The mechanism of FeS formation in this acidic bath is composed of first the slow release of iron and sulfur ions 

within solution and then the deposition of these ions on the alloy surface. The iron and sulfur ions are provided from 

iron trichloride and thioacetamide, respectively. The formation of FeS film from this acidic bath is dependent on 

whether the deposition rate of the ionic product of iron and sulfur is higher than solubility of FeS or not. Adding 

urea to the solution adjusted the balance between hydrolysis and deposition. The proposed reactions for this 

mechanism is described as follows [22]: 

FeCl2 → Fe2+ + 2 Cl− 

CH3CSNH2 + H2O ↔ S2−+ CH3CONH2 + 2H+ 

CO (NH2)2 + H2O ↔ 2NH3 + CO2 

NH3 + H2O ↔ NH4
+ + OH− 

Fe2+ + S2- ↔ FeS  

 

Finally, the overall reaction can be written as: 

Fe2+ + CH3CSNH2 + CO (NH2)2 + 2H2O → FeS + CH3CONH2 + 2NH4 + CO2 

 

This second series enabled the estimation of effect of deposited FeS layer on electrochemical and corrosion behavior 

of 13% Cr stainless steel in presence of various chloride concentration. Table 3 presents the experimental conditions 

in the second series of the experiments. 

 

At the last series of experiments, the electrochemical behavior was analyzed while the electrode was initially 

covered by sublimed elemental sulfur 99.9999% (ACROS) [23]. This third series enabled the estimation of effect of 

deposited elemental sulfur on electrochemical and corrosion behavior of 13% Cr stainless steel in presence of 

various chloride concentration. Table 4 indicates the experimental conditions in third series of the experiments. 

 
Table 3. The experimental conditions in second series of the experiments 

Sample No 1 2 3 4 5 6 7 8 9 10 11 12 

T (◦C) 25 25 25 75 75 75 25 25 25 75 75 75 

NaCl (g/L) 0 10 20 0 10 20 0 10 20 0 10 20 

pH 2 2 2 2 2 2 4 4 4 4 4 4 

 
Table 4. The experimental conditions in third series of the experiments 

Sample No 1 2 3 4 5 6 7 8 9 10 11 12 

T (◦C) 25 25 25 75 75 75 25 25 25 75 75 75 

NaCl (g/L) 0 10 20 0 10 20 0 10 20 0 10 20 

pH 2 2 2 2 2 2 4 4 4 4 4 4 

 

During this study, corrosion experiments were conducted in a multi-port glass cell with a three electrodes setup at 

atmospheric pressure based on the ASTM G5-94 standard for potentiodynamic anodic polarization measurements 

[21]. Linear polarization resistance (LPR) technique was used to record the general corrosion rates after each 
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experiments. The applied sweep rate for this measurements was 0.5mV/s. An Ivium Compactstat Potentiostat 

monitoring system was used to perform electrochemical corrosion measurements and record the final corrosion 

rates. The immersion time was 24 hours for each experiment, however, prior to start of each test the sample was 
immersed in the solution for 55 minutes accordance with ASTM G5-82 [21]. The pH was adjusted 2 and 4 by 

adding deoxygenated hydrochloric acid. A graphite rod was used as the counter electrode (CE) and saturated 

silver/silver chloride (Ag/AgCl) was used as the reference electrode (RE) and as mentioned in material preparation 

section, the conventional 13% Cr steel samples was used as working electrodes (WE). Figure 1. illustrates our 

utilized experimental set up for corrosion measurements.  

 

 
Figure 1. The utilized experimental set up for corrosion rate measurements 

 

C. Optimal solution 

The optimization was carried out using Microsoft Excel Solver software. Solver is part of a suite of commands with 

what-if analysis tools. Solver works with a group of cells that are related, either directly or indirectly, to the 

objective function equation in the target cell. Solver adjusts the values in the changing cells, called the adjustable 

cells to produce the result. Constraints are applied to restrict the range of values of the variables used in the objective 

function [19]. Microsoft Excel Solver tool uses the Generalized Reduced Gradient (GRG) non-linear optimization 

code to develop the optimal function [24]. 
 

D. Curve fitting  

The polynomial curve fitting is a common task for data analysts in many fields of material science [25], [26]. 

However widespread application is not common largely because the use of statistics requires specialist knowledge, 

and no reference standards exist. The standard method to fit a curve to data is to use the least squares method [27]. 

In this study, due to nonlinearity of measured corrosion rates, the coefficients of a polynomial function were 

founded out by curve fitting method. In this regard, the measured corrosion rates were plotted and obtained data 

from the polynomial function were fitted to the measured results. The typical form of the utilized polynomial 

function can be identified as:  

 y=m0 + m1 * x + m2 * x2 + m3 * x3 +...+ m9 * x9. 

Where m is the coefficients of a polynomial function and x is the independent variable. 
 

E. Neural networks modelling 

The most important stage in the creation of a network which enables the transfer of the input data into the output 

data, is the learning stage [28]. At this stage the networks’ parameters such as the network type, training algorithm 

and the number of neurons in the hidden layer of the network are modified to fit the experimental data. The number 
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of input variables from experimental step will determine the number of input layer or in another words the number 

of input neurons and the number of output layers also come from the number of output variables in experimental 

step as well [29]. Designation of number of hidden layers between input and output layers is usually one of the most 
challenging part prior to create the networks because the increased number of hidden layers would not necessarily 

increase the networks efficiency and even may unfortunately decrease the speed of computing and make the 

networks much more complex. Therefore, the final efficiency of the networks would be directly affected by the 

interaction between neuron transfer functions and typical training patterns [4]. Further information regarding the 

ANNcan be found in [20], [30]. Figure 2. outlines our utilized configuration to predict the single output, corrosion 

rate, based on the four input layers: corrosion product layer, pH, temperature and salt concentration, through the five 

hidden layers.  

 

 
Figure 2.  The architecture of ANNused for predicting corrosion rate 

 

The designed network was trained by Levenberg-Marquardt algorithm, which is highly fast in computation, 

however, to reach the maximum performance it does require more memory in compared to the  other available 

training algorithms [31] Table 5 presents the specification of utilized ANNparameters for corrosion rate prediction 

purposes. 

 
Table 5. The specification of utilized ANNparameters 

Network Parameters Specification 

Hidden layer size a) 95, b) 85, c) 80, d) 40, e) 30 

Network type Feed- Forward 

Transfer function used at network layers Tangential- sigmoidal 

Performance function Least mean of squared errors 

Training algorithm  Levenberg-Marquardt 
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III. RESULT & DISCUSSION 

 
a) Corrosion measurements 

The general Corrosion Rates (CR) from Linear Polarization Resistance (LPR) measurements are given in Table 6. 

According to this table, for the first group of samples, with absence of initial corrosion layer on top, it is clear that 

increase of temperature and chloride concentration increased amount of the corrosion rates, however, with 

increasing pH from 2 to 4 the corrosion rate slightly decreased which, might be related to the kinetics of 

precipitation and facilitate corrosion product layers formation, therefore, decreasing the corrosion rates expected [2]. 

For the second group of samples that were covered with a thin FeS layer, the corrosion rates are generally higher 

than the first group of samples. It is worth mentioning that similar to the first group of samples (i.e. with no initial 
corrosion layer) increase of temperature and chloride concentration increased the corrosion rates while increase of 

pH decreased the corrosion rates. In addition, it can be highlighted that the highest corrosion rate, 4.46 mm/ year, 

was observed in the presence of elemental sulfur at 75◦C after addition of 20 g/L NaCl to the solution at pH 4. 

 
Table 6. The measured Corrosion Rates (CR) under different environmental conditions. 

Series 

# 

T 

(◦C) 

NaCl 

(g/L) 

pH CR 

(mm/y) 

Series 

# 

T 

(◦C) 

NaCl 

(g/L) 

pH CR 

(mm/y) 

Series 

# 

T 

(◦C) 

NaCl 

(g/L) 

pH CR 

(mm/y) 

1 25 0 2 0.057 2 25 0 2 0.472 3 25 0 2 0.301 

1 25 10 2 0.169 2 25 10 2 0.705 3 25 10 2 0.246 

1 25 20 2 0.744 2 25 20 2 0.797 3 25 20 2 0.524 

1 75 0 2 0.263 2 75 0 2 0.989 3 75 0 2 0.908 

1 75 10 2 0.709 2 75 10 2 0.901 3 75 10 2 2.713 

1 75 20 2 2.078 2 75 20 2 2.879 3 75 20 2 4.987 

1 25 0 4 0.009 2 25 0 4 0.327 3 25 0 4 0.077 

1 25 10 4 0.028 2 25 10 4 0.403 3 25 10 4 0.019 

1 25 20 4 0.476 2 25 20 4 0.576 3 25 20 4 0.113 

1 75 0 4 0.056 2 75 0 4 0.849 3 75 0 4 0.554 

1 75 10 4 0.498 2 75 10 4 0.756 3 75 10 4 1.108 

1 75 20 4 1.828 2 75 20 4 2.406 3 75 20 4 4.46 

 

b) Optimal solution 

From Table 6, one can see that the final corrosion rate is sensitive to all experimental parameters, i.e. the corrosion 

product layer, temperature, pH and chloride concentration. The complex and obscure mechanism of each parameter 

affects the results in microscopic and macroscopic levels, makes algebraic expressions incapable of predicting the 

rate of corrosion in this study. Thus, the corrosion rate is assumed to be a transcendental function of all the 
experimental parameters that account for the sensitivity of the corrosion rate to the all input parameters and their 

interactions. The initial utilized function is given by: 

𝐶𝑅 =  𝐿 (𝐹 +  𝑎)𝑚 (𝑇 + 𝑏)𝑛(𝑃 +  𝑐)𝑞  (𝐶 +  𝑑)𝑟   

 

Where F donates the film parameter, T is temperature parameter, P is the pH parameter and C is the chloride 

concentration parameter. 𝐿,𝑎,  𝑚,  𝑏,  𝑛,  𝑐,  𝑞,  𝑑 and 𝑟 are the user defined coefficients, whose values obtained 

from the optimization procedure.  

 

The goal of optimization procedure is to minimize the sum of squares of residuals. By choosing the initial value of 1 

for 𝐿,𝑚,𝑛, 𝑞 and 𝑟 and 0 for 𝑎, 𝑏, 𝑐 and 𝑑 the model prediction for corrosion rate at each experiment is calculated 

and the difference between the model result and the experimental result at each experiment is recorded. The sum of 

squares of residuals is: 

 

𝑆𝑆𝑟𝑒𝑠 =   (𝑦𝑖 −  𝑓𝑖)
2

𝑖
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Where 𝑦𝑖  is the experimental corrosion rate and 𝑓𝑖  is the predicted corrosion rate. The solver toolbox then changes 

the values of 𝐿,𝑎,  𝑚,  𝑏,  𝑛,  𝑐,  𝑞,  𝑑 and 𝑟 to minimise the magnitude of 𝑆𝑆𝑟𝑒𝑠 . This procedure is carried out 

repeatedly to find the optimized values for all the coefficients simultaneously. 

 

I. Curve fitting 

In order to utilize curve fitting method for prediction purposes, we need to plot inputs and outputs in two dimension. 

Since the number of inputs (i.e. corrosion product layer, temperature, pH and chloride concentration) is not identical 
to output (i.e. Corrosion Rate), therefore, the initial input function in terms of the 4 input parameters defined. This 

initial function, which is labeled as  Xn,  is expressed by: 

Xn (α, β, γ, λ) = α + β/10 + γ2 + (γλ + 1) 

 

where index of n is the number of experiment, α is normalized corrosion product layer parameter, which identified 

with three discrete values of 1, 10 and 20 that stand for the first, second and third series of experiments, respectively. 

And β is the normalized temperature parameter in Celsius, which varied between 25 to 75 ◦C, γ is the normalized pH 

parameter, which is varied between 2 to 4 and λ is normalized chloride concentration parameters, which is varied 

between 0 to 20 g/L. Thus, thanks to defined polynomial above, input value proportion to corrosion rate calculated 

and the following equation, which is defined by curve fitting method, utilized for corrosion rates prediction: 

CR= -0.006* Xn
 2 + 0.136* Xn - 0.025 

 

Different degrees of polynomial from 2 to 8 were tested to find the best fitted model. With regard to the values of R-

square which indicates thecloseness of the data to the fitted regression line, the best fitness was obtained with 

polynomial of degree two. In this case the measured R-squared is 0.78 which is relatively high and so it can be 

assumed that the fitness of the model with the experiments is relatively reasonable. Figure 3. shows the curve of p 

(x) in MATLAB®. 

 
Figure 3. The developed model by curve fitting in MATLAB® 

 

As displayed in Figure 3. the model was not able to fit with measured data in some areas, for instance, where the 

corrosion rates are higher than 1 mm/y. Thus, the model cannot be considered as an accurate model and still has 

weakness in prediction of the data. 
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c) Artificial Neural Network 

After determining the optimum ANNstructure, and prior to the process of training, the whole dataset of 36 input-

output pairs was randomly divided into the 30 training data set, white cell in Table 6 and the six validation data set, 
gray cells in Table. 6. Figure 4 and 5. demonstrate the measured values of corrosion rates and the values predicted 

by technique for the training and validation data set, respectively. It can be seen that in both two data sets a good 

prediction was achieved.  

 

 
Figure 4.  The corrosion rate (CR) amount based on measured and predicted by the ANNfor the training data set 

 

 
Figure 5. The corrosion rate (CR) amount based on measured and predicted by the ANNfor the validation data set 
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Detailed error analysis for the training and validation data sets is presented in Table 7, for corrosion rates 

. 
Table 7. Error analysis for the training and validation data sets 

Error analysis of Training data set Validation data set 

Maximum error 55.5% 11.8% 

Minimum error 0.2% 0.06% 

Average 15.5% 3.5% 

Standard deviation 1.2% 0.2% 

 

It can be concluded from Table 7 that the developed model has a low percentage of error for both set of training and 

validation data sets, which indicates the significant fitness of the model with the measured data. The small values of 
standard deviation also confirmed the accuracy of the predictive model. 

 

d) Comparison of three models 

Three models for prediction of corrosion rate were developed. Models are designed to predict the values of 

corrosion rate in different environmental conditions including various corrosion product layers, temperature, pH 

value and chloride ions concentration. In order to investigate performance of each proposed model, we selected 6 

data sets (i.e. utilized validation data set for the ANNcomputation) and their predicted corrosion rate by the optimal 

solution, curve fitting and ANNtechniques are reported in Table 8. Furthermore, amount of the predicted corrosion 

rate error in reference to measured once demonstrated.   

 
Table 8. Performance of each proposed model for validation data set 

Case CR 

measured 

CR 

Optimal 

solution 

CR 

curve 

fitting 

CR 

neural 

network 

%Error 

Optimal solution 

%Error 

Curve fitting 

%Error 

neural network 

1 0.705 0.2697 0.795 0.7046 61.74 12.76 0.05 

2 0.524 0.8659 0.2748 0.5243 65.25 47.5 0.05 

3 0.476 0.2678 0.4313 0.4402 43.74 8.82 8.13 

4 0.849 0.3977 0.7978 0.8502 0.3977 6.03 0.14 

5 0.498 0.6769 0.3911 0.4453 35.9 21.4 11.83 

6 0.908 0.702 0.320 0.8978 2.7 64.7 1.13 

Average 0.66 0.53 0.50 0.64 34.95 26.86 3.55 

 

As it is indicated in table above, the average of the error for the model developed by ANNis significantly low 

compared to the other two models. 

 

Deviations from measured results are given in Figure 6. Maximal deviation of results predicted with optimal 

solution and curve fitting models compared to measured results is 0.45 and 0.58 mm/y in absolute terms, obtained in 

4th and 6th instance respectively, while maximal deviation of results predicted with ANNequals 0.05 mm/y, 

obtained in 5th instance.  

 

Comparison of the deviation of each model from the measured data indicates that the model developed by the 

ANNhas the minimum general deviation and is able to predict the corrosion rate with the highest accuracy among 
the other models. 
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Figure 6.  Analysis of corrosion rate (CR) difference between values obtained with models and measured results. 

 

IV. CONCLUSION  
From the conducted electrochemical measurements on 13% Cr steel and developed models, the following 

conclusions can be made: 

 From the linear polarization resistance measurements, the corrosion rates for 13% chromium steels 

increases with the increase in chloride concentration and temperature however, it decreases with increase of 

pH values. This trend was observed in all series of experiments. 

 Moreover from the linear polarization resistance measurements, the highest corrosion rates for 13% 

chromium steels were measured at the third series of experiments, in the presence of elemental sulfur at 75 
◦C, while the minimum ones were measured at the first series of experiments, without any initial corrosion 

product layer on the sample surface at 25 ◦C. 

 The fitness between measured and predicted corrosion rates results by curve fitting indicates a good 

correlation between experiments and developed model. 

 The minimum deviation between predicted and measured data was obtained with ANNmodel which is 

insignificant compared to the deviation of the two other models from the measured data. 

 

The ANN model can be improved by optimizing the network parameters such as number of hidden layers, type of 

hidden layers and their transfer functions, learning algorithms and changing the ratio of training and validation data 

while in order to increase the accuracy of the curve fitting and optimal solution models is conducting more 

experiments and increasing the number of input data for the model. 
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